Practical Calculations Equation Solve Nonlinear Equation System Solver

  Nonlinear Equation System Solver
  Differential Equation Solver
  Differential Equation System Solver
  High Order Differential Equation




Nonlinear Equation System Solver

Solution of nonlinear equation systems by Newton-Raphson iteration method.
Variable Number :
Variable symbols
Equations$$\mathcal{F}\left(\mathcal{X}\right)=0$$
$f_{1}\left ( x,y\right)=$
$f_{2}\left ( x,y\right)=$
  Iteration Initial Vector  
$x_{0}=$
$y_{0}=$
Max. Iter. Number
Max. Error


Functions to be used in the equation:
$\begin{array}{lllll} x^a & \hookrightarrow & \textbf{pow(x,a)} \\sin\, x & \hookrightarrow & \textbf{sin(x)} &cos\,x & \hookrightarrow & \textbf{cos(x)} \\tan\,x & \hookrightarrow & \textbf{tan(x)} & ln\,x & \hookrightarrow &\textbf{log(x)} \\e^x & \hookrightarrow & \textbf{exp(x)} &\left|x\right| & \hookrightarrow & \textbf{abs(x)} \\arcsin\,x & \hookrightarrow & \textbf{asin(x)} &arccos\,x& \hookrightarrow & \textbf{acos(x)} \\arctan\,x & \hookrightarrow & \textbf{atan(x)} &\sqrt{x} & \hookrightarrow & \textbf{sqrt(x)} \\\pi & \hookrightarrow &\textbf{pi} &e \textrm{ sayısı} & \hookrightarrow & \textbf{esay} \\ln\,2 & \hookrightarrow &\textbf{LN2} & ln\,10 & \hookrightarrow & \textbf{LN10} \\log_{2}\,e & \hookrightarrow & \textbf{Log2e} &log_{10}\,e & \hookrightarrow & \textbf{Log10e} \end{array}$
© Copyright 2024    Muhsoft