Practical Calculations Equation Solve Differential Equation System Solver

  Nonlinear Equation System Solver
  Differential Equation Solver
  Differential Equation System Solver
  High Order Differential Equation




First Order Differential Equation System Solution

The differential equation you want to solve:
Equation Number

Formula:

Variable symbols
$\displaystyle {\frac{dy}{dt}}=f_1(t,y,z)=$
$\displaystyle {\frac{dz}{dt}}=f_2(t,y,z)=$
Necessary boundary conditions for solution:
$\displaystyle t_{0}=$
$\displaystyle y_{0}=$
$\displaystyle z_{0}=$
The desired $t$ value to be found:
$t_n=$
Increment $\Delta t=$
Functions to be used in the equation:

$\begin{array}{lllll} x^a & \hookrightarrow & \textbf{pow(x,a)} \\sin\, x & \hookrightarrow & \textbf{sin(x)} &cos\,x & \hookrightarrow & \textbf{cos(x)} \\tan\,x & \hookrightarrow & \textbf{tan(x)} & ln\,x & \hookrightarrow &\textbf{log(x)} \\e^x & \hookrightarrow & \textbf{exp(x)} &\left|x\right| & \hookrightarrow & \textbf{abs(x)} \\arcsin\,x & \hookrightarrow & \textbf{asin(x)} &arccos\,x& \hookrightarrow & \textbf{acos(x)} \\arctan\,x & \hookrightarrow & \textbf{atan(x)} &\sqrt{x} & \hookrightarrow & \textbf{sqrt(x)} \\\pi & \hookrightarrow &\textbf{pi} &e \textrm{ sayısı} & \hookrightarrow & \textbf{esay} \\ln\,2 & \hookrightarrow &\textbf{LN2} & ln\,10 & \hookrightarrow & \textbf{LN10} \\log_{2}\,e & \hookrightarrow & \textbf{Log2e} &log_{10}\,e & \hookrightarrow & \textbf{Log10e} \end{array}$
© Copyright 2024    Muhsoft