Practical Calculations Equation Solve Differential Equation Solver

  Nonlinear Equation System Solver
  Differential Equation Solver
  Differential Equation System Solver
  High Order Differential Equation




First Order Differential Equations Solution

Solution of first order differential equations in the form of $\displaystyle {\frac{dy}{dx}}=f(x,y)$ or $\displaystyle {y'}=f(x,y)$ is made by numerical analysis method. Use the $x$ and $y$ variables. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, write pow(x,2) for $x^2$.

The differential equation you want to solve:
$\displaystyle {\frac{dy}{dx}}=f(x,y)=$
Formula:
Necessary boundary conditions for solution:
$x_0=$
$y_0=$
The desired $x$ value to be found:
$x_1=$
Increment $\Delta x=$
Functions to be used in the equation:
$\begin{array}{lllll} x^a & \hookrightarrow & \textbf{pow(x,a)} \\sin\, x & \hookrightarrow & \textbf{sin(x)} &cos\,x & \hookrightarrow & \textbf{cos(x)} \\tan\,x & \hookrightarrow & \textbf{tan(x)} & ln\,x & \hookrightarrow &\textbf{log(x)} \\e^x & \hookrightarrow & \textbf{exp(x)} &\left|x\right| & \hookrightarrow & \textbf{abs(x)} \\arcsin\,x & \hookrightarrow & \textbf{asin(x)} &arccos\,x& \hookrightarrow & \textbf{acos(x)} \\arctan\,x & \hookrightarrow & \textbf{atan(x)} &\sqrt{x} & \hookrightarrow & \textbf{sqrt(x)} \\\pi & \hookrightarrow &\textbf{pi} &e \textrm{ sayısı} & \hookrightarrow & \textbf{esay} \\ln\,2 & \hookrightarrow &\textbf{LN2} & ln\,10 & \hookrightarrow & \textbf{LN10} \\log_{2}\,e & \hookrightarrow & \textbf{Log2e} &log_{10}\,e & \hookrightarrow & \textbf{Log10e} \end{array}$
© Copyright 2024    Muhsoft