Pratik Hesaplamalar Denklem Çözümleri Lineer Olmayan Denklem Sistemi

  Lineer Olmayan Denklem Sistemi
  Diferansiyel Denklem
  Diferansiyel Denklem Sistemi
  Yüksek Dereceli Dif. Denklem









Doğrusal Olmayan Denklem Sistemi Çözümü

Çok bilinmeyenli lineer (doğrusal) olmayan denklem sistemlerinin çözümü. Denklem sisteminin birden fazla çözümü olabilir. Reel çözümü bulunmayabilir. İterasyon ile çözüm bulunması nedeniyle, başlangıç değere bağlı olarak farklı sonuçlar bulunabilir.

Bilinmeyen Sayısı :
Denklemler\begin{equation*}\mathcal{F}\left(\mathcal{X}\right)=0\end{equation*}
\(f_{1}\left ( x,y\right)=\)
\(f_{2}\left ( x,y\right)=\)
  İterasyon Başlangıç Vektörü  
\(x_{0}=\)
\(y_{0}=\)
Maks. İter. Sayısı
Maks . Hata


Denklem içinde kullanılacak fonksiyonlar:
\(\begin{array}{lll|lll} x^a & \hookrightarrow & \mathrm{pow(x,a)} \\\sin\, x & \hookrightarrow & \mathrm{sin(x)} &\cos\,x & \hookrightarrow & \mathrm{cos(x)} \\\tan\,x & \hookrightarrow &\mathrm{tan(x)} &\ln\,x & \hookrightarrow & \mathrm{log(x)} \\e^x & \hookrightarrow & \mathrm{exp(x)} &\left|x\right| & \hookrightarrow & \mathrm{abs(x)} \\\arcsin\,x & \hookrightarrow & \mathrm{asin(x)} &\arccos\,x & \hookrightarrow & \mathrm{acos(x)} \\\arctan\,x & \hookrightarrow & \mathrm{atan(x)} &\sqrt{x} & \hookrightarrow & \mathrm{sqrt(x)} \\ \\\pi & \hookrightarrow & \mathrm{pi} &e \mathrm{ sayısı} & \hookrightarrow & \mathrm{esay} \\\ln\,2 & \hookrightarrow &\mathrm{LN2} & \ln\,10 & \hookrightarrow & \mathrm{LN10} \\\log_{2}\,e & \hookrightarrow & \mathrm{Log2e} & \log_{10}\,e & \hookrightarrow & \mathrm{Log10e} \end{array}\)

Ondalık sembolü olarak nokta(.) kullanınız. Örneğin; 1,0 yerine 1.0 yazınız.

Örnek: Aşağıdaki denklem sistemini çözelim.
\( \begin{matrix} x^2+y^2=4 \\ y+e^x=1 \end{matrix}\)

\( \begin{matrix} f_1(x,y)=x^2+y^2-4=0 \\ f_2(x,y)=y+e^x-1=0 \end{matrix}\)
denklemi şekline gelir. Bu denklemlerden;
\(f_1(x,y)\) : pow(x,2)+pow(y,2)-4 ,
\(f_2(x,y)\) : y+pow(esay,x)-1
yazılır. İterasyon başlangıcı olarak, örneğin \(x_0=1.0\), \(y_0=-1.7\) yazıp, "Hesapla" ya tıkladığımızda, bize sonuç vektörünü verecektir. Bazı denklemlerin birden fazla çözümü olabilir. Bu çözümlere farklı başlangıç değerler ile ulaşılabilir.
© Copyright 2021    Muhsoft